ONE-POT SYNTHESIS OF 85 % ENRICHED $^{13}{\rm C}$ (U)-L-ASPARAGINE FROM $^{13}{\rm C}$ (U)-L-ASPARTIC ACID

Hung LAM-THANH, René MERMET-BOUVIER, Serge FERMANDJIAN and Pierre FROMAGEOT

Service de Biochimie, Département de Biologie, CEN-SACLAY 91191 - GIF-sur-YVETTE Cedex, FRANCE

SUMMARY

An improved high yield, racemization free synthesis of 85 % $^{13}\text{C(U)-L-Asparagine}$ by β - carboxamide formation on $^{13}\text{C(U)}$ enriched L-Aspartic acid is reported.

Key Words: $^{13}C(U)L$ -Asparagine - β -Carboxamide

INTRODUCTION

As incorporation of amino acids labeled with stable isotopes (13 C, 15 N, 2 H) into peptides (1) (2) or proteins (3) becomes widely used for spectroscopic purposes applied to biology (conformation - activity relationship) and medicine (pharmacokinetics,...), the preparation of 13 C-enriched-L-asparagine as a precursor for metabolism studies or as starting material for peptide synthesis, seemed interesting. We report here an improved high yield synthesis of 13 C(U) labeled L-asparagine starting with 13 C(U) L-aspartic acid which is a biosynthetical product obtained in our Laboratory (4).

144 H. Lam-Thanh et al.

RESULTS AND DISCUSSION

The preparation of L-asparagine labeled with ¹⁵N from L-aspartic acid has been described by Yamamoto in 1963 (5). He used L-aspartic acid anhydride which was then esterified specifically on the α -carboxylic group with benzyl alcohol (5). In our case TLC analysis has shown that the esterification led to the concomittant formation of β -benzyl and α - β -dibenzyl ester of aspartic acid instead of the single N- and $C\alpha$ -protected L-aspartic acid useful for further chemical transformation on the Cβ-carboxylic group. We used then the Cordopatis method (6) for the preparation of N-Trityl- α -benzyl -L-aspartic acid. This however probably because only few chemical details were available in the report (6) led only to a partially pure compound. Alcaline hydrolysis of N-Trityl-L-aspartic acid (α,β) dibenzyl ester was probably the critical step. Therefore the one-pot synthesis or straight-on synthesis of $^{13}C(U)-L$ asparagine from $^{13}C(U)$ -L-aspartic acid was carried out according to scheme I.

Outline of synthesis scheme for 85 % enriched $^{13}C(U)$ - L-asparagine from $^{13}C(U)$ - L-aspartic acid.

The straight-on synthesis of L-asparagine was achieved without purification of the intermediate and seems an advantageous method for two reasons:

- it is not time consuming
- the yield is good (calculated from L-aspartic acid): 40 60 %

Regarding Yamamoto's method, β -carboxamide reaction was performed with the mixed anhydride method instead of the acyl chloride methods (5). Smooth cleavage of the protecting group of L-asparagine by hydrogenolysis gave no detectable nitrile formation via deshydratation of the β -carboxamide group according to amino acid analysis (7) (Figure 1). Purification of 85 % $^{13}\text{C(U)-L-asparagine}$ by partition chromatography on G-25 Sephadex is revealed as a suitable method for obtaining pure L-asparagine: this is based on the relative hydrophobicity of the by-product (para-Nitrobenzyl alcohol) with respect to L-asparagine.

EXPERIMENTAL

85 % $^{13}C(U)$ - L - Aspartic acid :

 13 C -labelling of L-aspartic acid was obtained in large scale from blue-green "Synechococcus" as described (4). Algae were grown in the presence of highly enriched NaH 13 CO $_3$. Proteins extracted with trichloroacetic acid were hydrolyzed by pronase and then by $\rm H_2SO_4$ (6N) at 100° C. 13 C(U)-L-aspartic acid was finally separated by ion-exchange chromatography. The enriched amino acid was then collected, evaporated and precipitated with acetone.

85 % $^{13}C(U)$ - L-Asparagine :

2 600 mg (20 mmol) of 85 % 13 C(U)-L-aspartic acid was acylated with benzyl-chloroformate (25 mmol) according to Zervas procedure described by Yamamoto (5). After extraction, 5 300 mg of Z-L-aspartic acid was recovered. The formation of Z-L-aspartic acid anhydride was performed with freshly distilled acetic anhydride (5) : 5 000 mg of Z-L-aspartic acid anhydride was obtained after drying overnight on P_2O_5 .

146 H. Lam-Thanh et al.

Figure I : Amino acid analysis of 85 % $^{13}\text{C}(\text{U})$ -L-Asparagine on an auto amino-acid analyzer LKB, type 4 400 :

A- ¹²C-L-Asparagine, 5 nmol (first nihydrin-positive

peak is assigned to thiodiglycol impurity) $^{13}\text{C-L-Asparagine}$

C- ¹³C-L-Asparagine after L-amino-oxydase digestion.

Dicyclohexylammonium salt of benzyloxycarbonyl L-aspartic acid α - p - nitrobenzyl ester was prepared according to Schröder's procedure (8) and gave 6 500 mg of derivative after washing with 20 % citric acid. Mixed anhydride was performed as described : 6 500 mg of Z-L-aspartic acid- α -p-nitrobenzyl ester was dissolved in 100 ml of absolute tetrahydrofurane (peroxyde free), neutralized with 2 ml (20 mmol) of N-methyl-morpholine and cooled to -20°C. Ethylchloroformate was then added in four fractions of 1.8 ml (20 mmol). After 30 min at -20°C, dry ammonia (NH $_{\rm z}$ through KOH pellets) was bubbled in the medium with a slow stream during 30 min at -20°C, then 2 hours at 0°C. The solvent was evaporated to dryness and the residue was taken up in $\mathrm{CH_2Cl_2}$ (300 ml). This solution was washed with 3×100 ml of 5 % NaHCO₃, then with water and dried $(MgSO_4)$. After removal of the solvent, the crude product was dissolved in 100 ml of methanol and 10 ml of acetic acid, mixed with 500 mg of palladium black (10 % Pd) and submitted for overnight hydrogenolysis. The product obtained after removal of catalyst and solvent was then chromatographied on G-25 Sephadex fine column (80 cm x 2.5 cm). Elution with 500 ml of the organic phase of I-Butanol/Pyridine/Acetic acid 0.1 % v/v : 5/3/II gave fractions containing coloured products (e.g. p-nitrobenzyl alcohol). ¹³C-L-Asparagine emerged with the elution by the aqueous phase of the same solvent. Fractions containing 13C-L-Asparagine according to TLC analysis were collected, evaporated and lyophilized (yield: 1650 mg or 60%).

Characterization of 85 % $^{13}\mathrm{C}$ (U)-L-Asparagine was performed by three methods :

- 1 $\underline{\text{amino acid analysis}}$: $^{13}\text{C-labeled L-Asparagine}$ has the same retention time as $^{12}\text{C-L-Asparagine}$ (Figure I-A and B).
- 2 elemental analysis : found (C : 37.12, O : 35.25, N : 20.49,
- H : 6.10) calculated (C : 37.96, O : 35.45, N : 20.67, H : 5.90)
- $3 \frac{\text{racemization test}}{\text{constant}}$: degradation of 85 % $^{13}\text{C(U)-L-Asparagine}$ by L-amino oxydase according to the Crotalus adamenteus L-amino oxydase procedure (9) has shown that no detectable racemization occurs during the chemical transformation of $^{13}\text{C-L-Aspartic}$ acid (Figure I-C).

148 H. Lam-Thanh et al.

REFERENCES

- /1/ LAM-THANH,H., TOMA F., FERMANDJIAN,S., FROMAGEOT,P. and LOFFET,A.
 in Proc. 14th. Europ.Peptide Symposium Wepion, Belgium,
 April 1976, p.609, Editions de l'Université de Bruxelles,
 LOFFET, A., Bruxelles
- /2/ TOMA F., FERMANDJIAN, S., LÖW, M. and KISFALUDY, L., Biopolymers, 20, 901 (1981)
- /3/ CIPOLLO, K.L., LEWIS, C.A. Jr., ELLIS, P.D. and DUNLAP, R.B. J. Biol.Chem. <u>2</u>57, 4398 (1982)
- /4/ TRAN-DINH, S., FERMANDJIAN, S., SALA, E., MERMET-BOUVIER, R., COHEN, M. and FROMAGEOT, P., J.Amer.Chem.Soc, 96, 1484 (1974)
- /5/ YAMAMOTO, Y., Biochem. Prep. vol.10, p.10, John Wiley and Sons (1963)
- /6/ CORDOPATIS, P. and THEODROPOULOS, D., Experientia, 31, 1255 (1975)
- /7/ HEMMASI, B. and BAYER, E., Hoppe Seyler's Z. Physio.Chem. <u>355</u>, 481 (1974)
- /8/ SCHRÖDER, E. and KLIEGER, E., Liebigs Ann. Chem. 673, 208 (1964)
- /9/ GREENSTEIN, J.P., WINITZ, M. in Chemistry of Amino Acids, vol.2, p.1789, Wiley, New-York (1961)

The nomenclature is in accord with the IUPAC-IUB rules on Biochemical Nomenclature, Biochem.J. 126, 773 (1972). The abbreviations are: Z, Benzyloxycarbonyl, Z-Cl, benzylchloroformate, HONB, p-Nitrobenzyl alcohol, DCHA, dicyclohexylamine, TLC, thin layer chromatography, Trityl, triphenyl-methyl. TLC silica gel plates were developed in 3 solvent systems:

I-Butanol/Acetic acid/Water : 4/I/I) for N and C-protected Chloroform/Methanol/Acetic acid : 95/5/3) Hexane/Ethyl acetate/Acetic acid : 20/10/I) amino-acid.

and in 2 other solvent systems:

I-Butanol/Pyridine/Acetic acid 0.1 % : 5/3/11) for amino-acid I-Butanol/Pyridine/Acetic acid/Water :15/3/10/12)